I want to calculate softmax/probability using multinomial logit while using longsumexp to avoid overflow. Using numba bring about 2-3x speedup. Can I do better here? Also when I use fastmath=True it does not seem to bring any speedup, so did I do write numba loops in a wrong way?
import numba
import numpy as np
def get_p_4d(a, lamda):
m = a * lamda[:, None][:,None].transpose(0,3,1,2)
c = np.max(m, axis=2)[:,None].transpose(0,2,1,3)
aa = np.exp(m - c)
logsumexp = c + np.log(aa.sum(axis=2)[:,None].transpose(0,2,1,3))
p = np.exp(m - logsumexp)
return p
@numba.njit()
def get_p_4d_nb(a, lamda, num_code, num_draw, num_action):
p = np.empty((num_code, num_draw, num_action, 3))
a = a.transpose(0, 1, 3, 2)
for i in range(num_code):
for j in range(num_draw):
this_lamda = lamda[i,j]
for k in range(num_action):
p[i, j, k, 0] = a[i, j, k, 0] * this_lamda
p[i, j, k, 1] = a[i, j, k, 1] * this_lamda
p[i, j, k, 2] = a[i, j, k, 2] * this_lamda
c = p[i,j,k,0]
c = max(c, p[i,j,k,1])
c = max(c, p[i,j,k,2])
logsumexp = np.log(
np.exp(p[i, j, k, 0] - c) + np.exp(p[i, j, k, 1] - c) + np.exp(p[i, j, k, 2] - c)) + c
p[i, j, k, 0] = np.exp(p[i, j, k, 0] - logsumexp)
p[i, j, k, 1] = np.exp(p[i, j, k, 1] - logsumexp)
p[i, j, k, 2] = np.exp(p[i, j, k, 2] - logsumexp)
return p.transpose(0, 1, 3, 2)
a=np.ones((112,1000,3,3))
lamda = np.random.uniform(0., 1., size=112*1000).reshape(112,1000)
get_p_4d(a, lamda)
get_p_4d_nb(a, lamda, 112, 1000, 3)
You can try parallelize the task (I've also a little bit reduced the code using slicing
0:3):Benchmark:
Prints on my machine (AMD 5700x):