I'm trying to create a program that turns everything in an image black, except for the letters in a license plate area. I'm not sure where to start with this. I know I can use OpenCV in Python to load the image and access its pixel values, but how do I identify the bounding box of the license plate area in the image and set its pixel values to a specific color, like white? Additionally, how can I set the rest of the pixels outside the license plate area to black? Here's a starting point for my code:
# Step 1: Crop the license plate area
license_plate_area = opencv.imread('image.png')
# Step 2: Sharpen the license plate area using a kernel
sharpening_kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
sharpened_license_plate = opencv.filter2D(license_plate_area, -1, sharpening_kernel)
# Step 3: Increase contrast using CLAHE
lab = opencv.cvtColor(sharpened_license_plate, opencv.COLOR_BGR2LAB)
l, a, b = opencv.split(lab)
clahe = opencv.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
limg = opencv.merge([clahe.apply(l), a, b])
enhanced_license_plate = opencv.cvtColor(limg, opencv.COLOR_LAB2BGR)
# Step 4: Preprocess for OCR - Grayscale conversion, Gaussian blur, and Adaptive thresholding
grayscale_license_plate = opencv.cvtColor(enhanced_license_plate, opencv.COLOR_BGR2GRAY)
blurred_license_plate = opencv.GaussianBlur(grayscale_license_plate, (3, 3), 0)
_, thresholded_license_plate = opencv.threshold(blurred_license_plate, 0, 255,
opencv.THRESH_BINARY + opencv.THRESH_OTSU)
# Step 5: Morphological operations to clean up the image
morph_kernel = opencv.getStructuringElement(opencv.MORPH_RECT, (3, 3))
opened_license_plate = opencv.morphologyEx(thresholded_license_plate, opencv.MORPH_OPEN, morph_kernel,
iterations=1)
# Dilate the black region to include pixels outside the margin
dilate_kernel = opencv.getStructuringElement(opencv.MORPH_RECT,
(5, 5))
dilated_license_plate = opencv.dilate(opened_license_plate, dilate_kernel, iterations=1)
# Invert the image so that the big words are black and the background is white
inverted_license_plate = opencv.bitwise_not(dilated_license_plate)
# Set any white pixels inside the black margin to black
for y in range(dilated_license_plate.shape[0]):
for x in range(dilated_license_plate.shape[1]):
if dilated_license_plate[y, x] == 0: # Black pixel encountered
inverted_license_plate[y, x] = 255 # Invert to white
elif inverted_license_plate[y, x] != 0: # White pixel encountered
inverted_license_plate[y, x] = 0 # Keep it black
opencv.imshow('Window', inverted_license_plate)
opencv.waitKey(0)
opencv.destroyAllWindows()

Here is one way to make the outside of the license area all white in Python/OpenCV.
Read the input. Then threshold on black. Then get the largest external contour. Use the contour to draw a white filled region on a black background as a mask. Use the mask to white out the area outside the license in the input. Save the results.
Input:
Threshold image:
Mask image:
Result image: