I want to build a RAG (Retrieval Augmented Generation) service with LangChain and for the retriever I want to use Solr.
There is already a python package eurelis-langchain-solr-vectorstore where you can use Solr in combination with LangChain but how do I define server credentials? And my embedding model is already running on a server. I thought something like this but I don't know
import requests
from eurelis_langchain_solr_vectorstore import Solr
embeddings_model = requests.post("http://server-insight/embeddings/")
solr = Solr(embeddings_model, core_kwargs={
'page_content_field': 'text_t', # field containing the text content
'vector_field': 'vector', # field containing the embeddings of the text content
'core_name': 'langchain', # core name
'url_base': 'http://localhost:8983/solr' # base url to access solr
}) # with custom default core configuration
retriever = solr.as_retriever()