I would like to carry on a latent change score model for 5 different psychological constructs measured at two time points in lavaan. People told me it can do ok with missing data. I'm struggling with some points:

Let's say I have 4100 respondents at the first measurement point and only 700 at the second and I'm running 5 different models for each of the 5 variables that I'm dealing with. Please assume that self awareness is sa in this example, sm is self-management . Does the following model have the correct specifications?

model <- "
  int =~ 1 * sa_t1 + 1 * sa_t2
  slope =~ 1 * sa_t2
  int ~~ int
  slope ~~ slope
  sa_t1 ~ 0
  sa_t2 ~ 0
  int ~ 1
  slope ~ 1
  sa_t1 ~~ 0 * sa_t1
  sa_t2 ~~ 0 * sa_t2
  
  "


fit <- lavaan::sem(model, df_elementary_t1t2_full %>% select(sa_t1, sa_t2))
semPlot::semPaths(fit, layout="tree2", sizeMan=7, sizeInt = 4, normalize=FALSE, 
                  edge.label.cex = .9,
                  whatLabels="est", width=4, height=1, rotation=2, nCharNodes = 0)

Comparing this result with traditional repeat measures ANOVA, the results are very different

df_elementary_t1t2_full %>% 
  lm(sa_t2 ~ sa_t1, data = .) %>%
  apaTables::apa.aov.table()

I'm based on this post from Terrance (he's a wiz) and this book.

If possible to run all the 5 constructs at once, it would be great. Thanks

Part of the real dataframe

    df_elementary_t1t2_full = structure(list(gender = structure(c(2L, 1L, 1L, NA, 2L, NA, NA, 
1L, NA, 2L, 1L, 2L, 3L, NA, 1L, 2L, 1L, 1L, 1L, 2L, 2L, NA, NA, 
1L, 1L, 2L, NA, 2L, NA, NA, 2L, 2L, NA, 1L, 2L, NA, NA, 2L, 2L, 
2L, NA, NA, NA, 1L, NA, 1L, 2L, 2L, 2L, 2L), levels = c("f", 
"m", "prefer not to say"), class = "factor"), grade = c(4, 4, 
6, 5, 6, 6, 4, 6, 6, 4, 6, 6, 5, 6, 6, 4, 4, 5, 4, 4, 4, 6, 5, 
5, 6, 4, 6, 4, 4, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 4, 5, 4, 5, 
4, 4, 4, 4, 4, 5), sa_t1 = structure(c(0.229204895870929, -0.314854576777207, 
-0.314854576777207, 0.773264368519065, -0.314854576777207, 0.229204895870929, 
-0.0428248404531391, -1.40297352207348, 0.229204895870929, -0.858914049425343, 
0.501234632194997, 0.773264368519065, 0.773264368519065, 0.229204895870929, 
0.229204895870929, -0.314854576777207, 1.04529410484313, -0.0428248404531391, 
0.501234632194997, 0.773264368519065, 1.58935357749127, 0.501234632194997, 
0.501234632194997, -0.0428248404531391, -0.314854576777207, -0.0428248404531391, 
1.04529410484313, -0.858914049425343, -0.858914049425343, -0.0428248404531391, 
-0.858914049425343, -0.314854576777207, 0.501234632194997, -1.40297352207348, 
0.773264368519065, 0.229204895870929, -1.13094378574941, 0.773264368519065, 
-0.314854576777207, -1.13094378574941, 0.229204895870929, 0.773264368519065, 
-0.586884313101275, 1.58935357749127, 0.501234632194997, -0.586884313101275, 
1.3173238411672, 0.229204895870929, 1.04529410484313, -0.0428248404531391
), "`\`scaled:center\``" = 14.1574270557029, "`\`scaled:scale\``" = 3.67606870305055, dim = c(50L, 
1L)), sa_t2 = structure(c(-0.332172641489581, NA, -0.599928625867865, 
0.47109531164527, NA, NA, 0.47109531164527, NA, NA, NA, NA, NA, 
NA, -0.332172641489581, NA, NA, NA, NA, NA, NA, 1.27436326478012, 
NA, NA, NA, NA, NA, -2.20646453213757, NA, NA, NA, 1.27436326478012, 
NA, NA, NA, 1.27436326478012, NA, NA, -0.599928625867865, NA, 
NA, NA, NA, NA, NA, NA, NA, 1.54211924915841, 0.203339327266987, 
NA, NA), "`\`scaled:center\``" = 14.2405797101449, "`\`scaled:scale\``" = 3.73474379040286, dim = c(50L, 
1L)), sm_t1 = structure(c(0.208683559625981, 0.208683559625981, 
-2.36865638948498, 1.2699411857305, -1.30739876338047, 1.11833295342985, 
0.511900024227271, -0.397749369576599, -1.61061522798176, -2.06543992488369, 
0.360291791926626, 0.208683559625981, 0.815116488828561, 0.511900024227271, 
0.966724721129206, -1.00418229877918, 0.057075327325336, -0.549357601877244, 
0.360291791926626, 1.72476588263243, 1.72476588263243, 0.966724721129206, 
0.511900024227271, 0.360291791926626, -1.15579053107982, -0.246141137275954, 
0.815116488828561, 0.360291791926626, 0.511900024227271, 0.663508256527916, 
-0.397749369576599, -0.0945329049753089, 1.11833295342985, -1.00418229877918, 
0.966724721129206, 0.208683559625981, -0.397749369576599, 0.663508256527916, 
0.815116488828561, -1.15579053107982, 0.663508256527916, 0.057075327325336, 
-0.549357601877244, 2.02798234723372, 0.663508256527916, -1.15579053107982, 
-0.0945329049753089, -1.45900699568111, 1.11833295342985, -0.246141137275954
), "`\`scaled:center\``" = 28.6235341151386, "`\`scaled:scale\``" = 6.59594789032934, dim = c(50L, 
1L)), sm_t2 = structure(c(-0.432614415195137, NA, -2.53755178724211, 
1.37161761798798, NA, NA, 0.770206940260276, NA, NA, NA, NA, 
NA, NA, -0.131909076331284, NA, NA, NA, NA, NA, NA, 1.67232295685184, 
NA, NA, NA, NA, NA, -0.883672423490917, NA, NA, NA, -1.18437776235477, 
NA, NA, NA, 1.52197028741991, NA, NA, 0.920559609692202, NA, 
NA, NA, NA, NA, NA, NA, NA, -0.582967084627064, 1.07091227912413, 
NA, NA), "`\`scaled:center\``" = 28.8773311230833, "`\`scaled:scale\``" = 6.65102923531902, dim = c(50L, 
1L)), soca_t1 = structure(c(-0.565012428107959, 0.423748326054346, 
-0.565012428107959, -0.0706320510268063, -1.88336010032437, 1.2477156211896, 
0.0941614080002446, 0.423748326054346, 0.588541785081397, -2.04815355935142, 
1.08292216216255, 0.918128703135499, 0.588541785081397, -0.235425510053857, 
1.08292216216255, -0.72980588713501, 0.0941614080002446, 0.918128703135499, 
-0.235425510053857, 1.5773025392437, 0.258954867027295, -0.235425510053857, 
1.5773025392437, 0.0941614080002446, 0.423748326054346, 0.588541785081397, 
0.918128703135499, -1.55377318227026, -0.565012428107959, -0.72980588713501, 
-0.400218969080908, -0.565012428107959, 0.918128703135499, 1.08292216216255, 
-0.72980588713501, 1.41250908021665, -0.0706320510268063, -0.894599346162061, 
-0.72980588713501, -1.22418626421616, 0.918128703135499, 0.753335244108448, 
-0.565012428107959, 1.2477156211896, 1.41250908021665, -1.05939280518911, 
0.423748326054346, -0.565012428107959, 1.08292216216255, 0.918128703135499
), "`\`scaled:center\``" = 28.4286095543101, "`\`scaled:scale\``" = 6.06820201423073, dim = c(50L, 
1L)), soca_t2 = structure(c(-1.19778259737864, NA, -0.552580257562162, 
0.0926220822543204, NA, NA, 0.0926220822543204, NA, NA, NA, NA, 
NA, NA, 0.253922667208441, NA, NA, NA, NA, NA, NA, 0.576523837116682, 
NA, NA, NA, NA, NA, 0.899125007024924, NA, NA, NA, -1.52038376728689, 
NA, NA, NA, 1.22172617693316, NA, NA, -0.391279672608042, NA, 
NA, NA, NA, NA, NA, NA, NA, 1.06042559197904, 0.0926220822543204, 
NA, NA), "`\`scaled:center\``" = 28.4257796257796, "`\`scaled:scale\``" = 6.19960553946183, dim = c(50L, 
1L)), rel_t1 = structure(c(-0.256736839498058, 0.484059419012018, 
-1.88648860822022, -0.553055342902088, -0.701214594604103, 0.484059419012018, 
0.187740915607988, -0.404896091200073, -1.44201085311418, -2.33096636332627, 
0.780377922416048, 0.484059419012018, 1.66933343262814, 0.484059419012018, 
1.81749268433015, -0.701214594604103, -0.553055342902088, 0.484059419012018, 
-0.108577587796043, 1.66933343262814, 1.81749268433015, 0.484059419012018, 
1.81749268433015, 1.22485567752209, -0.108577587796043, 0.0395816639059724, 
0.484059419012018, -0.256736839498058, -1.29385160141216, -0.256736839498058, 
-0.404896091200073, -0.553055342902088, 1.22485567752209, 0.484059419012018, 
0.484059419012018, -0.108577587796043, -1.29385160141216, -0.256736839498058, 
0.484059419012018, -1.73832935651821, 1.07669642582008, 0.632218670714033, 
-0.997533098008134, 1.22485567752209, 1.66933343262814, -0.256736839498058, 
-0.256736839498058, -1.73832935651821, 1.07669642582008, 0.484059419012018
), "`\`scaled:center\``" = 33.7328437917223, "`\`scaled:scale\``" = 6.74949413224121, dim = c(50L, 
1L)), rel_t2 = structure(c(-0.814176449272021, NA, -0.959841291895562, 
0.49680713433985, NA, NA, 0.0598126064692266, NA, NA, NA, NA, 
NA, NA, 0.933801662210474, NA, NA, NA, NA, NA, NA, 1.51646103270464, 
NA, NA, NA, NA, NA, -0.66851160664848, NA, NA, NA, -0.814176449272021, 
NA, NA, NA, 0.788136819586933, NA, NA, 0.49680713433985, NA, 
NA, NA, NA, NA, NA, NA, NA, -0.231517078777856, 0.0598126064692266, 
NA, NA), "`\`scaled:center\``" = 33.5893819991705, "`\`scaled:scale\``" = 6.86507452305713, dim = c(50L, 
1L)), rdm_t1 = structure(c(-1.17089225239951, 0.880911938734223, 
-2.0258106653719, 0.367960890950789, 0.367960890950789, 1.56484666911213, 
0.0259935257618338, -0.828924887210555, -0.657941204616077, -0.999908569805033, 
0.880911938734223, 0.538944573545267, 1.39386298651766, 0.196977208356312, 
0.880911938734223, -0.828924887210555, -0.315973839427122, -0.315973839427122, 
0.0259935257618338, 1.90681403430109, 1.56484666911213, 0.367960890950789, 
1.56484666911213, 0.538944573545267, 0.0259935257618338, 0.0259935257618338, 
0.0259935257618338, -0.999908569805033, -0.4869575220216, -0.315973839427122, 
-0.828924887210555, -0.144990156832644, 0.880911938734223, 0.880911938734223, 
-0.657941204616077, 0.538944573545267, -0.828924887210555, 0.196977208356312, 
-0.315973839427122, -1.34187593499399, 0.196977208356312, 1.0518956213287, 
0.0259935257618338, 1.90681403430109, 1.22287930392318, -0.315973839427122, 
0.709928256139745, -0.657941204616077, 1.22287930392318, 0.367960890950789
), "`\`scaled:center\``" = 26.84797657082, "`\`scaled:scale\``" = 5.84851130134857, dim = c(50L, 
1L)), rdm_t2 = structure(c(-0.825337957180077, NA, -2.3372624123534, 
1.35855292251472, NA, NA, 0.686586497993245, NA, NA, NA, NA, 
NA, NA, 0.518594891862876, NA, NA, NA, NA, NA, NA, 2.0305193470362, 
NA, NA, NA, NA, NA, -1.49730438170155, NA, NA, NA, 0.0146200734717684, 
NA, NA, NA, 1.52654452864509, NA, NA, -0.825337957180077, NA, 
NA, NA, NA, NA, NA, NA, NA, -0.153371532658601, 0.182611679602137, 
NA, NA), "`\`scaled:center\``" = 26.9129714048902, "`\`scaled:scale\``" = 5.95267836908444, dim = c(50L, 
1L)), overall_t1 = structure(c(-0.403080674728024, 0.458730750369108, 
-1.83943304988991, 0.376653471788429, -0.977621624792779, 1.15638761830488, 
0.21249891462707, -0.526196592599043, -0.81346706763142, -2.08566488563195, 
0.869117143272504, 0.663923946820806, 1.2795035361759, 0.294576193207749, 
1.2795035361759, -0.895544346212099, -0.0337329211149675, 0.130421636046391, 
0.0893829967560514, 1.89508312553099, 1.64885128978896, 0.499769389659448, 
1.4846967326276, 0.581846668240127, -0.279964756857005, 0.0893829967560514, 
0.746001225401485, -0.731389789050741, -0.608273871179722, -0.156848838985986, 
-0.649312510470062, -0.403080674728024, 1.15638761830488, 0.130421636046391, 
0.171460275336731, 0.540808028949787, -0.85450570692176, 0.0483443574657117, 
0.0483443574657117, -1.59320121414787, 0.787039864691825, 0.746001225401485, 
-0.649312510470062, 1.89508312553099, 1.36158081475658, -0.81346706763142, 
0.376653471788429, -1.14177618195414, 1.32054217546624, 0.376653471788429
), "`\`scaled:center\``" = 131.821979522184, "`\`scaled:scale\``" = 24.3672796489477, dim = c(50L, 
1L)), overall_t2 = structure(c(-0.875826183500941, NA, -1.70865173077828, 
0.908799989236211, NA, NA, 0.472558035900462, NA, NA, NA, NA, 
NA, NA, 0.353582957717986, NA, NA, NA, NA, NA, NA, 1.66230881772523, 
NA, NA, NA, NA, NA, -0.875826183500941, NA, NA, NA, -0.717192745924306, 
NA, NA, NA, 1.46401702075444, NA, NA, -0.00334227682944478, NA, 
NA, NA, NA, NA, NA, NA, NA, 0.234607879535509, 0.393241317112145, 
NA, NA), "`\`scaled:center\``" = 132.08427672956, "`\`scaled:scale\``" = 25.2153648127785, dim = c(50L, 
1L)), id = c(2872L, 237L, 254L, 1156L, 3137L, 1257L, 2068L, 1271L, 
1828L, 55L, 2004L, 2414L, 4038L, 2030L, 1309L, 3000L, 246L, 171L, 
3321L, 3L, 1726L, 2280L, 918L, 3296L, 2854L, 3434L, 675L, 193L, 
373L, 239L, 2483L, 2557L, 289L, 1686L, 1888L, 2945L, 927L, 1246L, 
2190L, 1708L, 2205L, 3201L, 820L, 88L, 619L, 3719L, 1891L, 3571L, 
419L, 326L)), row.names = c(NA, -50L), class = c("tbl_df", "tbl", 
"data.frame"))
0

There are 0 best solutions below