By interpreting the equation in this way, we can relate the dynamics described by the discrete Klein - Gordon equation to the behavior of DNA molecules within a biological system. I am trying to represent stationary points of the discrete Klein - Gordon equation. The results are as follows. Mathematica's are different from MATLAB's. What changes should I make to my Matlab code? Any suggestion?
% Parameters
numBases = 100; % Number of spatial points
omegaD = 0.2; % Common parameter for the equation
% Preallocate the array for the function handles
equations = cell(numBases, 1);
% Initial guess for the solution
initialGuess = 0.01 * ones(numBases, 1);
% Parameter sets for kappa and beta
paramSets = [0.1, 0.05; 0.5, 0.05; 0.1, 0.2];
% Prepare figure for subplot
figure;
set(gcf, 'Position', [100, 100, 1200, 400]); % Set figure size
% Newton-Raphson method parameters
maxIterations = 1000;
tolerance = 1e-10;
for i = 1:size(paramSets, 1)
kappa = paramSets(i, 1);
beta = paramSets(i, 2);
% Define the equations using a function
for n = 2:numBases-1
equations{n} = @(x) -kappa * (x(n+1) - 2 * x(n) + x(n-1)) - omegaD^2 * (x(n) - beta * x(n)^3);
end
% Boundary conditions with specified fixed values
someFixedValue1 = 10; % Replace with actual value if needed
someFixedValue2 = 10; % Replace with actual value if needed
equations{1} = @(x) x(1) - someFixedValue1;
equations{numBases} = @(x) x(numBases) - someFixedValue2;
% Combine all equations into a single function
F = @(x) cell2mat(cellfun(@(f) f(x), equations, 'UniformOutput', false));
% Newton-Raphson iteration
x_solution = initialGuess;
for iter = 1:maxIterations
% Evaluate function
Fx = F(x_solution);
% Evaluate Jacobian
J = zeros(numBases, numBases);
epsilon = 1e-6; % For numerical differentiation
for j = 1:numBases
x_temp = x_solution;
x_temp(j) = x_temp(j) + epsilon;
Fx_temp = F(x_temp);
J(:, j) = (Fx_temp - Fx) / epsilon;
end
% Update solution
delta = -J\Fx;
x_solution = x_solution + delta;
% Check convergence
if norm(delta, inf) < tolerance
fprintf('Convergence achieved after %d iterations.\n', iter);
break;
end
end
if iter == maxIterations
error('Maximum iterations reached without convergence.');
end
% Plot the solution in a subplot
subplot(1, 3, i);
plot(x_solution, 'o-', 'LineWidth', 2);
grid on;
xlabel('n', 'FontSize', 12);
ylabel('x[n]', 'FontSize', 12);
title(sprintf('\\kappa = %.2f, \\beta = %.2f', kappa, beta), 'FontSize', 14);
end
% Improve overall aesthetics
sgtitle('Stationary States for Different \kappa and \beta Values', 'FontSize', 16); % Super title for the figure
Mathematica plots
numBases = 100; (*Number of base pairs,representing a segment of DNA*)
kappa = 1/
10; (*Elasticity constant,chosen to reflect the \
stiffness;arbitrary unit*)
omegaD =
2/10; (*Frequency term,speculative and low to reflect slow \
dynamics*)
beta = 5/
100; (*Nonlinearity coefficient small to introduce mild \
nonlinearity*)
(*Initialize a list for the x_n variables*)
variables = Table[x[n], {n, 1, numBases}];
(*Define the equations based on the discretized version of the \
Klein-Gordon equation*)
equations =
Table[-kappa (x[n + 1] - 2 x[n] + x[n - 1]) ==
omegaD^2 (x[n] - beta x[n]^3), {n, 2, numBases - 1}];
(*Add boundary conditions,for example,x[1] and x[numBases] fixed to 0 \
or any other value*)
boundaryConditions = {x[1] == 10, x[numBases] == 10};
(*Combine the equations with the boundary conditions*)
fullSystem = Join[equations, boundaryConditions];
(*Solve the system with an initial guess for each variable*)
initialGuess =
Table[{x[n], 1/100}, {n, 1,
numBases}]; (*or any small value close to expected solutions*)
solution =
FindRoot[fullSystem, initialGuess,
Method -> {"Newton", "StepControl" -> "TrustRegion"}];
(*Extract the solution for plotting or analysis*)
solvedValues = Table[x[n] /. solution, {n, 1, numBases}];
(*Optionally,you can plot the solution to visualize the stationary \
states*)
ListPlot[solvedValues, PlotStyle -> PointSize[Medium], Joined -> True,
GridLines -> Automatic, PlotRange -> All,
AxesLabel -> {"n", "x[n]"}, LabelStyle -> {"Medium", Bold}]

