I am using Detectron2 in a notebook and I keep getting the error: No evaluator found. Use DefaultTrainer.test(evaluators=)
, or implement its build_evaluator
method.
I already have the build_evaluator function in the Trainer function.
class AugTrainer(DefaultTrainer):
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
return COCOEvaluator(dataset_name, output_dir=output_folder)
@classmethod
def build_train_loader(cls, cfg):
return build_detection_train_loader(cfg, mapper=custom_mapper)
Trainer gets called here:
trainer = DefaultTrainer(cfg) if not is_augment else AugTrainer(cfg)
trainer.resume_or_load(resume=is_resume_training)
trainer.train()
I thought COCOEvaluator would also get called when the Trainer gets called.
print("### EVALUATING ON VALIDATION DATA ####")
# trained model weights
cfg.MODEL.WEIGHTS = str(MODEL_PATH)
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.6 # set a custom testing threshold
cfg.SOLVER.IMS_PER_BATCH = 64
evaluator = COCOEvaluator(DATA_REGISTER_VALID, cfg, False, output_dir=cfg.OUTPUT_DIR, use_fast_impl=True)
val_loader = build_detection_test_loader(cfg, DATA_REGISTER_VALID)
results = inference_on_dataset(trainer.model, val_loader, evaluator=evaluator)
# print the evaluation results
print("Evaluation results for dataset {}: \n".format(DATA_REGISTER_VALID))
print("Average Precision (AP) in given IoU threshold: \n")
print(results["bbox"])
I don't know what I'm doing wrong. Thanks in advance.
I've tried following these methods:
- https://gist.github.com/ortegatron/c0dad15e49c2b74de8bb09a5615d9f6b#file-mytrainer-py
- https://eidos-ai.medium.com/training-on-detectron2-with-a-validation-set-and-plot-loss-on-it-to-avoid-overfitting-6449418fbf4e
- https://kilong31442.medium.com/colab-note-how-to-train-detectron2-on-custom-objects-3974be195dd8#:~:text=Train%20Custom%20Detectron2%20Detector
I want the evaluator to print Average Precision (AP) and Evaluation results for dataset
It seems like you would like to perform evaluation during the training process instead of after the training process. To do this, follow these steps:
I hope this helps you!