I'm scraping multiple sports betting websites in order to compare the odds for each match across the websites.
My question is how to identify match_id
from a match that already exists in the DB but has team names written in a different way.
Please feel free to add any approaches even if they don't use dataframes or SQLite.
The columns for matches
table are:
match_id: int, sport: string, home_team: string, away_team: string, date: string (dd/mm/YYY)
So for each new match I want to verify if it already exists in the DB.
New match = (sport_to_check, home_team_to_check, away_team_to_check, date_to_check)
My pseudo-code is like:
SELECT match_id FROM matches
WHERE sport = (sport_to_check)
AND date = (date_to_check)
AND (fuzz(home_team, home_team_to_check) > 80 OR fuzz(away_team, away_team_to_check) > 80) //the fuzzy scores evaluation
If no match is found the new row would be inserted.
I believe there's no way to mix python with SQL like that so that's why I refer to it as "pseudo-code".
I can also pull the matches table into a Pandas dataframe and do the evaluation with it, if that works (how?...).
At any given time it isn't expected for matches table to have above a couple of thousand records.
Let me give you some examples of expected outputs. Where the solution is represented by "find(row)"
Having matches table in DB as:
+----------+------------+-----------------------------+----------------------+------------+
| match_id | sport | home_team | visitor_team | date |
+----------+------------+-----------------------------+----------------------+------------+
| 84 | football | confianca | cuiaba esporte clube | 24/11/2020 |
| 209 | football | cs alagoana | operario pr | 24/11/2020 |
| 184 | football | grenoble foot 38 | as nancy lorraine | 24/11/2020 |
| 7 | football | sv turkgucu-ataspor munchen | saarbrucken | 24/11/2020 |
| 414 | handball | dinamo bucareste | usam nimes | 24/11/2020 |
| 846 | handball | benidorm | naturhouse la rioja | 25/11/2020 |
| 874 | handball | cegledi | ferencvarosi tc | 25/11/2020 |
| 418 | handball | lemvig-thyboron | kif kolding | 25/11/2020 |
| 740 | ice hockey | tps | kookoo | 25/11/2020 |
| 385 | football | stevenage | hull | 29/11/2020 |
+----------+------------+-----------------------------+----------------------+------------+
And new matches to evaluate:
+----------------+------------+---------------------+---------------------+------------+
| row (for demo) | sport | home_team | visitor_team | date |
+----------------+------------+---------------------+---------------------+------------+
| A | football | confianca-se | cuiaba mt | 24/11/2020 |
| B | football | csa | operario | 24/11/2020 |
| C | football | grenoble | nancy | 24/11/2020 |
| D | football | sv turkgucu ataspor | 1 fc saarbrucken | 24/11/2020 |
| E | handball | dinamo bucuresti | nimes | 24/11/2020 |
| F | handball | bm benidorm | bm logrono la rioja | 25/11/2020 |
| G | handball | cegledi kkse | ftc budapest | 25/11/2020 |
| H | handball | lemvig | kif kobenhavn | 25/11/2020 |
| I | ice hockey | turku ps | kookoo kouvola | 25/11/2020 |
| J | football | stevenage borough | hull city | 29/11/2020 |
| K | football | west brom | sheffield united | 28/11/2020 |
+----------------+------------+---------------------+---------------------+------------+
Outputs:
find(A) returns: 84
find(B) returns: 209
find(C) returns: 184
find(D) returns: 7
find(E) returns: 414
find(F) returns: 846
find(G) returns: 874
find(H) returns: 418
find(I) returns: 740
find(J) returns: 385
find(K) returns: (something like "not found" => I would then insert the new row)
Thanks!
Basically I filter down the original table by the given date and sport. then use fuzzywuzzy to find the best match between the home and visitors between the rows remaining:
Setup:
Code:
Output: