summary(elev)
dat.geo=as.geodata(elev)
res.geo=variog(dat.geo, max.dist = 3000, breaks = seq(0,3000,by=30))
res.fit2 <- variofit(res.geo, cov.model = 'gaussian')
llgrf2=loglik.GRF(dat.geo,obj.model=res.fit2)
My data is elev.
summary(elev)
X Y elev
Min. : 0 Min. : 0 Min. :340.2
1st Qu.:175 1st Qu.:125 1st Qu.:344.7
Median :350 Median :250 Median :351.3
Mean :350 Mean :250 Mean :352.4
3rd Qu.:525 3rd Qu.:375 3rd Qu.:360.2
Max. :700 Max. :500 Max. :367.8
I tied multiple covariance models to determine the best fit model, but when I use gaussian models, and run the code:
llgrf2=loglik.GRF(dat.geo,obj.model=res.fit2)
R always showed:
trying another decomposition (svd)
Error in solve.default(V$varcov, xmat[[i]]) :
system is computationally singular: reciprocal condition number = 4.58279e-22
how should I solve this problem?