I have to get AUC (area under the ROC curve) to evaluate my models. I am using the SRE model with Biomod2 package.
Biomod2 gives me AUC value through evaluate() function which is nice. Then I tried to check AUC with ROCR package, and I got a big problem : AUC values from evaluate() (Biomod2) and ROCR weren't the same. (For some other models not implemented on Biomod2, I have to use ROCR package so that's why I am anxious.)
Now I am trying to find the problem using a reproducible example (code from Biomod2 package), but I get an error.
First, the code from Biomod2 package (reproducible example):
library(biomod2)
library(ROCR)
# species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv",
package="biomod2"), row.names = 1)
head(DataSpecies)
# the name of studied species
myRespName <- 'GuloGulo'
# the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])
# the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]
# Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = stack( system.file( "external/bioclim/current/bio3.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio4.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio7.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio11.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio12.grd",
package="biomod2"))
# 1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespXY,
resp.name = myRespName)
# 2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()
# 3. Doing Modelisation
myBiomodModelOut <- BIOMOD_Modeling( myBiomodData,
models = c('SRE'),
models.options = myBiomodOption,
NbRunEval=1,
DataSplit=80,
Yweights=NULL,
VarImport=3,
models.eval.meth = c('TSS'),
SaveObj = TRUE,
rescal.all.models = FALSE,
do.full.models = FALSE,
modeling.id='test')
# 4. Evaluate model over another dataset (here the full one)
## creation of suitable dataset
data <- cbind(GuloGulo=get_formal_data(myBiomodModelOut,'resp.var'),
get_formal_data(myBiomodModelOut,'expl.var'))
## evaluation
evaluate(myBiomodModelOut, data=data, stat=c('ROC','TSS'))
Then, the part to get AUC from ROCR :
# 4.1 Projection on current environemental conditions
myBiomodProjection <- BIOMOD_Projection(modeling.output = myBiomodModelOut,
new.env = myExpl,
proj.name = 'current',
selected.models = 'all',
binary.meth = 'TSS',
compress = FALSE,
build.clamping.mask = FALSE)
myBiomod_raster <- get_predictions(myBiomodProjection) #, as.data.frame=TRUE
spp_occ <- myResp
sauv_p <- as.vector(as.matrix(myBiomod_raster))
ROC_curve <- data.frame(result=sauv_p, spp=spp_occ) #préparation
ROC_curve <- prediction(ROC_curve$result, ROC_curve$spp) #run
AUC <- performance( ROC_curve, "auc" )@y.values
print(AUC[[1]])
The problem I have is I can't create a data.frame from myResp and myBiomod_raster, because length(myResp)
= 2488 and length for myBiomod_raster is 5640.
The error is : Arguments imply differing number of rows
Do you know how I could do to have the same number of rows, using the datas from this Biomod2 package example?
Thanks a lot!