I have a dataset with susceptibilities of various drugs to different bacteria.
I would like to get the susceptibility frequencies by organism. Is there a way to streamline this, instead of copy/pasting for each drug?
I'm thinking using apply or maybe writing a function, but not sure where to start.
pacman::p_load(tidyverse,
janitor)
demo_dat <- data.frame(
stringsAsFactors = FALSE,
organism_name = c("Klebsiella pneumonia","Klebsiella pneumonia",
"Escherichia coli","Klebsiella pneumonia",
"Enterobacter cloacae","Escherichia coli",
"Klebsiella pneumonia","Escherichia coli",
"Escherichia coli","Escherichia coli",
"Klebsiella pneumonia","Klebsiella pneumonia",
"Escherichia coli","Klebsiella pneumonia",
"Escherichia coli","Serratia marcenscens",
"Klebsiella oxytoca","Escherichia coli",
"Proteus mirabilis","Escherichia coli"),
amox_clav_po = c("S",
"S","S","I","R","I","S","I","R","I",
"S","S","S","S","I","R","S","S","S",
"R"),
amp_sul_iv = c("S",
"I","S","S","R","R","S","S","R","I",
"S","I","S","I","R","R","S","S","S",
"R"),
cefaclor_po = c("S",
"S","S","S","R","S","S","S","S","S",
"S","S","S","S","R","R","S","S","S",
"S"),
ceftriaxone_iv = c("S",
"S","S","S","S","S","S","S","S","S",
"S","S","S","S","R","S","S","S","S",
"S")
)
demo_dat |>
group_by(organism_name) |>
summarise(susceptibility = sum((amox_clav_po == "S")/n()))
#> # A tibble: 6 × 2
#> organism_name susceptibility
#> <chr> <dbl>
#> 1 Enterobacter cloacae 0
#> 2 Escherichia coli 0.333
#> 3 Klebsiella oxytoca 1
#> 4 Klebsiella pneumonia 0.857
#> 5 Proteus mirabilis 1
#> 6 Serratia marcenscens 0
demo_dat |>
group_by(organism_name) |>
summarise(susceptibility = sum((amp_sul_iv == "S")/n()))
#> # A tibble: 6 × 2
#> organism_name susceptibility
#> <chr> <dbl>
#> 1 Enterobacter cloacae 0
#> 2 Escherichia coli 0.444
#> 3 Klebsiella oxytoca 1
#> 4 Klebsiella pneumonia 0.571
#> 5 Proteus mirabilis 1
#> 6 Serratia marcenscens 0
Created on 2024-01-29 with reprex v2.0.2
Session infosessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.2.2 (2022-10-31)
#> os macOS Big Sur ... 10.16
#> system x86_64, darwin17.0
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz America/Phoenix
#> date 2024-01-29
#> pandoc 3.1.1 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.2.0)
#> backports 1.4.1 2021-12-13 [1] CRAN (R 4.2.0)
#> broom 1.0.1 2022-08-29 [1] CRAN (R 4.2.0)
#> cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.2.0)
#> cli 3.6.1 2023-03-23 [1] CRAN (R 4.2.0)
#> colorspace 2.0-3 2022-02-21 [1] CRAN (R 4.2.0)
#> crayon 1.5.2 2022-09-29 [1] CRAN (R 4.2.0)
#> DBI 1.1.3 2022-06-18 [1] CRAN (R 4.2.0)
#> dbplyr 2.2.1 2022-06-27 [1] CRAN (R 4.2.0)
#> digest 0.6.30 2022-10-18 [1] CRAN (R 4.2.0)
#> dplyr * 1.1.2 2023-04-20 [1] CRAN (R 4.2.0)
#> ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.2.0)
#> evaluate 0.17 2022-10-07 [1] CRAN (R 4.2.0)
#> fansi 1.0.3 2022-03-24 [1] CRAN (R 4.2.0)
#> fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.2.0)
#> forcats * 0.5.2 2022-08-19 [1] CRAN (R 4.2.0)
#> fs 1.5.2 2021-12-08 [1] CRAN (R 4.2.0)
#> gargle 1.2.1 2022-09-08 [1] CRAN (R 4.2.0)
#> generics 0.1.3 2022-07-05 [1] CRAN (R 4.2.0)
#> ggplot2 * 3.3.6 2022-05-03 [1] CRAN (R 4.2.0)
#> glue 1.6.2 2022-02-24 [1] CRAN (R 4.2.0)
#> googledrive 2.0.0 2021-07-08 [1] CRAN (R 4.2.0)
#> googlesheets4 1.0.1 2022-08-13 [1] CRAN (R 4.2.0)
#> gtable 0.3.1 2022-09-01 [1] CRAN (R 4.2.0)
#> haven 2.5.1 2022-08-22 [1] CRAN (R 4.2.0)
#> highr 0.9 2021-04-16 [1] CRAN (R 4.2.0)
#> hms 1.1.2 2022-08-19 [1] CRAN (R 4.2.0)
#> htmltools 0.5.3 2022-07-18 [1] CRAN (R 4.2.0)
#> httr 1.4.4 2022-08-17 [1] CRAN (R 4.2.0)
#> janitor * 2.1.0 2021-01-05 [1] CRAN (R 4.2.0)
#> jsonlite 1.8.3 2022-10-21 [1] CRAN (R 4.2.0)
#> knitr 1.40 2022-08-24 [1] CRAN (R 4.2.0)
#> lifecycle 1.0.3 2022-10-07 [1] CRAN (R 4.2.0)
#> lubridate 1.9.0 2022-11-06 [1] CRAN (R 4.2.0)
#> magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.2.0)
#> modelr 0.1.9 2022-08-19 [1] CRAN (R 4.2.0)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.2.0)
#> pacman 0.5.1 2019-03-11 [1] CRAN (R 4.2.0)
#> pillar 1.9.0 2023-03-22 [1] CRAN (R 4.2.0)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.2.0)
#> purrr * 1.0.1 2023-01-10 [1] CRAN (R 4.2.0)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.0)
#> readr * 2.1.3 2022-10-01 [1] CRAN (R 4.2.0)
#> readxl 1.4.1 2022-08-17 [1] CRAN (R 4.2.0)
#> reprex 2.0.2 2022-08-17 [1] CRAN (R 4.2.0)
#> rlang 1.1.1 2023-04-28 [1] CRAN (R 4.2.0)
#> rmarkdown 2.17 2022-10-07 [1] CRAN (R 4.2.0)
#> rstudioapi 0.14 2022-08-22 [1] CRAN (R 4.2.0)
#> rvest 1.0.3 2022-08-19 [1] CRAN (R 4.2.0)
#> scales 1.2.1 2022-08-20 [1] CRAN (R 4.2.0)
#> sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.2.0)
#> snakecase 0.11.0 2019-05-25 [1] CRAN (R 4.2.0)
#> stringi 1.7.8 2022-07-11 [1] CRAN (R 4.2.0)
#> stringr * 1.4.1 2022-08-20 [1] CRAN (R 4.2.0)
#> tibble * 3.2.1 2023-03-20 [1] CRAN (R 4.2.0)
#> tidyr * 1.2.1 2022-09-08 [1] CRAN (R 4.2.0)
#> tidyselect 1.2.0 2022-10-10 [1] CRAN (R 4.2.0)
#> tidyverse * 1.3.2 2022-07-18 [1] CRAN (R 4.2.0)
#> timechange 0.1.1 2022-11-04 [1] CRAN (R 4.2.0)
#> tzdb 0.4.0 2023-05-12 [1] CRAN (R 4.2.0)
#> utf8 1.2.2 2021-07-24 [1] CRAN (R 4.2.0)
#> vctrs 0.6.2 2023-04-19 [1] CRAN (R 4.2.0)
#> withr 2.5.0 2022-03-03 [1] CRAN (R 4.2.0)
#> xfun 0.34 2022-10-18 [1] CRAN (R 4.2.0)
#> xml2 1.3.3 2021-11-30 [1] CRAN (R 4.2.0)
#> yaml 2.3.6 2022-10-18 [1] CRAN (R 4.2.0)
#>
#> [1] /Library/Frameworks/R.framework/Versions/4.2/Resources/library
#>
#> ──────────────────────────────────────────────────────────────────────────────
You can pivot and summarize:
Just to make sure we're seeing the same thing as your output,