I have an output using the following model:
> unadj3_factor
Call:
coxph(formula = Surv(Tstart, Tstop, status) ~ as.factor(EXPOSURE.2) +
as.factor(EXPOSURE.3) + as.factor(EXPOSURE.4) + as.factor(EXPOSURE.5) +
as.factor(EXPOSURE.6) + as.factor(EXPOSURE_2.4) + as.factor(EXPOSURE_2.5) +
as.factor(EXPOSURE_2.6) + as.factor(EXPOSURE.4 * EXPOSURE_2.4) +
as.factor(EXPOSURE.5 * EXPOSURE_2.5) + as.factor(EXPOSURE.6 *
EXPOSURE_2.6) + strata(trans), data = filtercohort, control = coxph.control(iter.max = 5000),
method = "breslow")
output
coef exp(coef) se(coef) z p
as.factor(EXPOSURE.2)1 0.370 1.448 0.040 9.3 <
0.0000000000000002
as.factor(EXPOSURE.3)1 0.635 1.887 0.099 6.4 0.0000000001377649
as.factor(EXPOSURE.4)1 0.202 1.224 0.052 3.9 0.0000916916640771
as.factor(EXPOSURE.5)1 0.395 1.484 0.147 2.7 0.007
as.factor(EXPOSURE.6)1 -0.477 0.621 0.148 -3.2 0.001
as.factor(EXPOSURE_2.4)1 0.375 1.455 0.046 8.1 0.0000000000000005
as.factor(EXPOSURE_2.4)99 -4.579 0.010 0.005 -866.2 < 0.0000000000000002
as.factor(EXPOSURE_2.5)1 0.640 1.897 0.126 5.1 0.0000003825579063
as.factor(EXPOSURE_2.5)99 NA NA 0.000 NA NA
as.factor(EXPOSURE_2.6)1 -0.459 0.632 0.129 -3.6 0.0003579592922411
as.factor(EXPOSURE_2.6)99 NA NA 0.000 NA NA
as.factor(EXPOSURE.4 * EXPOSURE_2.4)1 0.141 1.152 0.215 0.7 0.513
as.factor(EXPOSURE.5 * EXPOSURE_2.5)1 -0.539 0.583 0.733 -0.7 0.462
as.factor(EXPOSURE.6 * EXPOSURE_2.6)1 1.479 4.390 0.426 3.5 0.0005097441097383
as.factor(EXPOSURE.6 * EXPOSURE_2.6)99 3.879 48.395 0.187 20.7 < 0.0000000000000002
Likelihood ratio test=1957129 on 13 df, p=<0.0000000000000002
n= 6996659, number of events= 865524
The 99's were originally missing values but recoded as "99". The reason is that the coxph model deletes these observations with missing values and these observations need to be retained.
How can I re-run the models by removing these levels from the model ? Or can I use a procedure to include missing values instead of '99's but recode to NA?
as.factor(ABRUPT_ALL_2.4)99
as.factor(ABRUPT_ALL_2.5)99
as.factor(ABRUPT_ALL_2.6)99
as.factor(ABRUPT_ALL.6 * ABRUPT_ALL_2.6)99