Below c++ program works fine, even though i have not allocated any memory to chr.
I went through google, SO and came across this
Why does this intentionally incorrect use of strcpy not fail horribly?
Here the program works fine for destination which has space less than the source.
Does that apply in my case also,strcpy writes into a random location in the heap?
#include<iostream>
using namespace std;
class Mystring
{
char *chr;
int a;
public:
Mystring(){}
Mystring(char *str,int i);
void Display();
};
Mystring::Mystring(char *str, int i)
{
strcpy(chr,str);
a = i;
}
void Mystring::Display()
{
cout<<chr<<endl;
cout<<a<<endl;
}
int main()
{
Mystring a("Hello world",10);
a.Display();
return 0;
}
output:-
Hello world
10
I tried the same thing with another c++ program, with any class and class member, and i was able to see the crash.
#include<iostream>
using namespace std;
int main()
{
char *src = "Hello world";
char *dst;
strcpy(dst,src);
cout<<dst<<endl;
return 0;
}
Please help me understand the behavior in the first c++ program.Is memory allocated somehow or strcpy is writing to some random memory location.
The behavior of your program is undefined by the C++ standard.
This means that any C++ implementation (e.g. a compiler) can do whatever it wants. Printing "hello!" on stdout would be a possible outcome. Formatting the hard disk would still be acceptable, as far as the C++ standard is involved. Practically, though, some random memory on the heap will be overwritten, with unpredictable consequences.
Note that the program is even allowed to behave as expected. For now. Unless it's Friday. Or until you modify something completely unrelated. This is what happened in your case, and is one of the worst thing to happen from the point of view of a programmer.
Later on, you may add some code and see your program crash horribly, and think the problem lies in the code you just added. This can cause you to spend a long time debugging the wrong part of the code. If that ever happens, welcome to hell.
Because of this, you should never, ever, rely on undefined behavior.