I'm trying to run a SHAP DeepExplainer on my image classification model (an adaptation of ResNet-50 for the CelebA dataset), but keep running into this issue. I'm not sure if it has to do with my model architecture (code shown below) or with something, because I think there's nothing wrong with the input data here. enter image description here
Here's my code for setting up the model:
import os
import time
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
import matplotlib.pyplot as plt
from PIL import Image
if torch.cuda.is_available():
torch.backends.cudnn.deterministic = True
##########################
### SETTINGS
##########################
# Hyperparameters
RANDOM_SEED = 1
LEARNING_RATE = 0.001
NUM_EPOCHS = 1
# Architecture
NUM_FEATURES = 128*128
NUM_CLASSES = 2
BATCH_SIZE = 256
#*torch.cuda.device_count()
#DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "gpu")
GRAYSCALE = False
if torch.cuda.is_available():
torch.backends.cudnn.deterministic = True
custom_transform = transforms.Compose([transforms.CenterCrop((178, 178)),
transforms.Resize((128, 128)),
#transforms.Grayscale(),
#transforms.Lambda(lambda x: x/255.),
transforms.ToTensor()])
train_dataset = CelebaDataset(csv_path='celeba-gender-train.csv',
img_dir='img_align_celeba/',
transform=custom_transform)
valid_dataset = CelebaDataset(csv_path='celeba-gender-valid.csv',
img_dir='img_align_celeba/',
transform=custom_transform)
test_dataset = CelebaDataset(csv_path='celeba-gender-test.csv',
img_dir='img_align_celeba/',
transform=custom_transform)
train_loader = DataLoader(dataset=train_dataset,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=0)
valid_loader = DataLoader(dataset=valid_dataset,
batch_size=BATCH_SIZE,
shuffle=False,
num_workers=0)
test_loader = DataLoader(dataset=test_dataset,
batch_size=BATCH_SIZE,
shuffle=False,
num_workers=0)
# Model
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes, grayscale):
self.inplanes = 64
if grayscale:
in_dim = 1
else:
in_dim = 3
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(in_dim, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1, padding=2)
self.fc = nn.Linear(2048 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, (2. / n)**.5)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
logits = self.fc(x)
probas = F.softmax(logits, dim=1)
return logits
#, probas
def resnet50(num_classes, grayscale):
"""Constructs a ResNet-50 model."""
model = ResNet(block=Bottleneck,
layers=[3, 4, 6, 3],
num_classes=NUM_CLASSES,
grayscale=grayscale)
return model
torch.manual_seed(RANDOM_SEED)
##########################
### COST AND OPTIMIZER
##########################
model = resnet50(NUM_CLASSES, GRAYSCALE)
#### DATA PARALLEL START ####
if torch.cuda.device_count() > 1:
print("Using", torch.cuda.device_count(), "GPUs")
model = nn.DataParallel(model)
#### DATA PARALLEL END ####
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
Here's the code for the explainer. The assumption here is that I already have a trained model (hence the line for loading 'celeba_resnet'):
model = resnet50(NUM_CLASSES, GRAYSCALE)
model.load_state_dict(torch.load('celeba_resnet'))
model.eval()
import numpy as np
import shap
import tensorflow as tf
# shap.explainers._deep.deep_tf.op_handlers["FusedBatchNormV3"] = shap.explainers._deep.deep_tf.linearity_1d(0)
# the line above is a potential workaround for a problem with Deep Explainer architecture
#print("Successful handling of batch normalization.")
background, _ = next(iter(train_loader))
# background = np.swapaxes(background, 1, -1)
# background = np.swapaxes(background, 1, 2)
print("Background shape: ", background.shape)
e = shap.DeepExplainer(model, background)
for batch_idx, (features, targets) in enumerate(train_loader):
features = features
targets = targets
# features = np.swapaxes(features, 1, -1)
# features = np.swapaxes(features, 1, 2)
print("Features shape: ", features.shape)
shap_values = np.array(e.shap_values(features))
if batch_idx == 0:
agg_shap_values = shap_values
else:
agg_shap_values = np.append(agg_shap_values, shap_values, axis=0)
The error occurs at the line where I'm trying to get the SHAP values from "features".