I'm trying to calculate the loss of my implementation of Mobilenet model. The loss function is as below:
def mobilenet_loss(y_true, y_pred):
'''
y_pred will be an tensor of (None, 21, 21, 3) where the last axis corresponds to the classes from class_list
y_true will be an integer 0, 1 or 2 that would indicate which class the true value belongs to
Since y_pred is the output of a Softmax function, the sum of elements in the last dim will be 1.0
Using y_true, we will construct a tensor y_true_array with ones in the index of y_true and zeros in others
We will be trying to minimize sum(y_true_array - y_pred)
'''
diagnostics = True
if diagnostics: print("ytrue =", y_true, " y_pred shape =", y_pred.shape)
y_true_array= tf.zeros_like(y_pred, dtype=tf.float32, name="loss_tru_array")
one_class_shape = y_pred.shape[:-1] + [1]
if diagnostics: print("one_class_shape =", one_class_shape)
ones =tf.ones(one_class_shape, dtype=tf.float32, name="loss_ones")
zeros = tf.zeros(one_class_shape, dtype=tf.float32, name="loss_ones")
if (tf.math.equal(y_true, tf.constant(0, dtype=tf.int64))):
y_true_array = tf.concat([ones, zeros, zeros], axis=-1)
elif (tf.math.equal(y_true, tf.constant(1, dtype=tf.int64))):
y_true_array = tf.concat([zeros, ones, zeros, ], axis=-1)
elif (tf.math.equal(y_true, tf.constant(2 , dtype=tf.int64))):
y_true_array = tf.concat([zeros, zeros, ones], axis=-1)
if diagnostics:
print("after y_true_array =", y_true_array.shape)
error = tf.math.subtract(y_true_array, y_pred, name="error")
if diagnostics: print("error shape = ", error.shape)
loss = tf.math.reduce_sum(error, name='final_loss')
if diagnostics: print("loss shape = ", loss.shape, loss)
return loss
I run unit test of this function using the code below to get the output as shown following that
y_true = 1
y_pred = tf.random.normal(shape = [1, 21,21,3], seed = 7)
out = mobilenet_loss(y_true, y_pred)
out.shape
Output of the unit test:
ytrue = 1 y_pred shape = (1, 21, 21, 3)
one_class_shape = (1, 21, 21, 1)
after y_true_array = (1, 21, 21, 3)
error shape = (1, 21, 21, 3)
loss shape = () tf.Tensor(437.87784, shape=(), dtype=float32)
TensorShape([])
When running the model, I get an InvalidArgumentError and none of the debug print statements from the loss function are printed.
model.fit(x = train_generator, steps_per_epoch = 1, epochs=2, batch_size=batch_size, shuffle=False)
Error:
InvalidArgumentError: Input to reshape is a tensor with 4 values, but the requested shape has 1
[[node mobilenet_loss/Reshape (defined at <ipython-input-41-4e7043bd8d70>:21) ]] [Op:__inference_train_function_12994]
Function call stack:
train_function
Please help me with this error. I'm a newbie and want to implement more models to gain experience