I have some code to calculate performance metrics within my Estimator
model_fn written in a function that returns a dictionary of metrics
def __model_eval_metrics(self, classes, labels, mode):
if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL:
return {
'accuracy': tf.metrics.accuracy(labels=tf.argmax(input=labels, axis=1), predictions=classes),
'precision': tf.metrics.precision(labels=tf.argmax(input=labels, axis=1), predictions=classes),
'recall': tf.metrics.recall(labels=tf.argmax(input=labels, axis=1), predictions=classes)
}
else:
return None
During estimator training, these are logged as scalers within model_fn
grouped by the name scope "train_metrics"
if mode == tf.estimator.ModeKeys.TRAIN:
with tf.name_scope('train_metrics') as scope:
tf.summary.scalar('model_accuracy', eval_metrics['accuracy'][1])
tf.summary.scalar('model_precision', eval_metrics['precision'][1])
tf.summary.scalar('model_recall', eval_metrics['recall'][1])
tf.summary.scalar('model_loss', loss)
This produces the desired grouping in Tensorboard
For Estimator
evaluation, the metrics are passed as a dictionary to EstimatorSpec
eval_metric_ops argument as the result of __model_eval_metrics()
return tf.estimator.EstimatorSpec(
mode=mode,
predictions={"predictions": predictions, "classes": classes},
loss=loss,
train_op=train_op,
eval_metric_ops=eval_metrics,
)
The problem is that in Tensorboard, these metrics are no longer grouped by name scope and I cannot figure out where to add a name scope to make this happen. You can see that evaluation metrics are ungrouped.
Question
- Is there an approach to leveraging name_scope for evaluation metrics with
Estimator
? - Should I just be ignoring name_scope altogether and just toggle the runs on the bottom-left of the Tensorboard screen?
I solved this by using the same "folder" prefix for the metric name (eval) as the name scope for summary (train):