I'm using this dataset from Kaggle, but I have this error:
ValueError: Data cardinality is ambiguous: x sizes: 8 y sizes: 8000 Make sure all arrays contain the same number of samples.
This is the full code:
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import tensorflow as tf
dataset = pd.read_csv('stunting1.csv')
dataset.Gender[dataset.Gender == 'Male'] = 1
dataset.Gender[dataset.Gender == 'Female'] = 0
dataset.Breastfeeding[dataset.Breastfeeding == 'Yes'] = 1 dataset.Breastfeeding[dataset.Breastfeeding == 'No'] = 0
dataset.Stunting[dataset.Stunting == 'Yes'] = 1
dataset.Stunting[dataset.Stunting == 'No'] = 0
x = dataset.drop(columns=['Stunting'])
y = dataset['Stunting']
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
model = tf.keras.models.Sequential()
x_train = np.array([np.array(val) for val in x_train])
y_train = np.array([np.array(val) for val in y_train])
x_test = np.array([np.array(val) for val in x_test])
y_test = np.array([np.array(val) for val in y_test])
model.add(tf.keras.layers.Dense(256, input_shape = x_train.shape, activation='sigmoid')) model.add(tf.keras.layers.Dense(256, activation='sigmoid'))
model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=1000)
Could you help me? Should I make a shape but how?