I am currently working on a transfer learning project using the EfficientNet model and I want to log into wandb to save the model history for comparison.
Unfortunately, I encountered an error. Previously, I used wandb for end-to-end model building, so now I am quite confused and cannot find a solution for this case.
Could you please help me with this? Thank you very much.
This is my code and error:
efficientnet_base = EfficientNetB0(weights='imagenet', include_top=False, input_shape=input_shape)
efficientnet_base.trainable = False
X_input = Input(shape=input_shape)
X = efficientnet_base(X_input)
X = AveragePooling2D(pool_size=(3, 3), strides=2, padding='valid', name='AvgPool2D')(X)
X = Flatten(name='Flatten')(X)
X = Dense(200, activation='relu', name='Dense1')(X)
X = Dropout(0.1)(X)
X = Dense(100, activation='relu', name='Dense2')(X)
X = Dropout(0.1)(X)
X = Dense(6, activation='softmax', name='Dense3')(X)
model = Model(inputs=X_input, outputs=X, name='Fruit_Classifer')
optimizer = Adam(learning_rate = 0.001)
model.compile(optimizer = optimizer, loss = 'categorical_crossentropy', metrics = ['accuracy'])
_ = model.fit(train_ds, validation_data = validation_ds, epochs = 5, batch_size = 32,
callbacks=[WandbCallback(data_type="image", generator=validation_ds), early_stopping])
Error
AttributeError Traceback (most recent call last)
Cell In[54], line 4
1 optimizer = Adam(learning_rate = 0.001)
3 model.compile(optimizer = optimizer, loss = 'categorical_crossentropy', metrics = ['accuracy'])
----> 4 _ = model.fit(train_ds, validation_data = validation_ds, epochs = 5, batch_size = 32,
5 callbacks=[WandbCallback(data_type="image", generator=validation_ds), early_stopping])
AttributeError: can't set attribute 'model'