The decision tree J48 generated a tree structure as below.
J48 pruned tree
petalwidth <= 0.6: Iris-setosa (50.0)
petalwidth > 0.6
| petalwidth <= 1.7
| | petallength <= 4.9: Iris-versicolor (48.0/1.0)
| | petallength > 4.9
| | | petalwidth <= 1.5: Iris-virginica (3.0)
| | | petalwidth > 1.5: Iris-versicolor (3.0/1.0)
| petalwidth > 1.7: Iris-virginica (46.0/1.0)
But it fails to classify the data below. Do anyone knows what may go wrong?
Plot : weka.classifiers.trees.J48 (iris)
Instance: 98
sepallength : 5.0
sepalwidth : 3.5
petallength : 1.6
petalwidth : 0.6
prediction margin : -1.0
predicted class : Iris-versicolor
class : Iris-setosa
As @fracpete commented, I am using cross-validation. What Weka show in the classifier output is the Classifier model which experiences a full training set, not the predictive model.