I have an array of values all well within the range 0 - 63, and decided I could pack every 4 bytes into 3 because the values only require 6 bits and I could use the extra 2bits to store the first 2 bits of the next value and so on.
Having never done this before I used the switch
statement and a nextbit
variable (a state machine like device) to do the packing and keep track of the starting bit. I'm convinced however, there must be a better way.
Suggestions/clues please, but don't ruin my fun ;-)
Any portability problems regarding big/little endian?
btw: I have verified this code is working, by unpacking it again and comparing with the input. And no it ain't homework, just an exercise I've set myself.
/* build with gcc -std=c99 -Wconversion */
#define ASZ 400
typedef unsigned char uc_;
uc_ data[ASZ];
int i;
for (i = 0; i < ASZ; ++i) {
data[i] = (uc_)(i % 0x40);
}
size_t dl = sizeof(data);
printf("sizeof(data):%z\n",dl);
float fpl = ((float)dl / 4.0f) * 3.0f;
size_t pl = (size_t)(fpl > (float)((int)fpl) ? fpl + 1 : fpl);
printf("length of packed data:%z\n",pl);
for (i = 0; i < dl; ++i)
printf("%02d ", data[i]);
printf("\n");
uc_ * packeddata = calloc(pl, sizeof(uc_));
uc_ * byte = packeddata;
uc_ nextbit = 1;
for (int i = 0; i < dl; ++i) {
uc_ m = (uc_)(data[i] & 0x3f);
switch(nextbit) {
case 1:
/* all 6 bits of m into first 6 bits of byte: */
*byte = m;
nextbit = 7;
break;
case 3:
/* all 6 bits of m into last 6 bits of byte: */
*byte++ = (uc_)(*byte | (m << 2));
nextbit = 1;
break;
case 5:
/* 1st 4 bits of m into last 4 bits of byte: */
*byte++ = (uc_)(*byte | ((m & 0x0f) << 4));
/* 5th and 6th bits of m into 1st and 2nd bits of byte: */
*byte = (uc_)(*byte | ((m & 0x30) >> 4));
nextbit = 3;
break;
case 7:
/* 1st 2 bits of m into last 2 bits of byte: */
*byte++ = (uc_)(*byte | ((m & 0x03) << 6));
/* next (last) 4 bits of m into 1st 4 bits of byte: */
*byte = (uc_)((m & 0x3c) >> 2);
nextbit = 5;
break;
}
}
So, this is kinda like code-golf, right?