I have two vectors u = {32, 25, 13, 42, 55, 33} and v = {18, 72, 53, 39, 13, 12, 28} for which I would like to determine the position of their first common entry, 13. For these example vectors, these positions are 3 and 5. What is the fastest way to find these positions? I have to do this operation many-many times.
What is the fastest way to find the positions of the first common entry in two vectors in c++?
289 Views Asked by ELTE Gaussian AtThere are 3 best solutions below
On
If not the fastest, then surely the simplest (assuming, as in your question, you want 1-based indexing, so we can use {0, 0} as a "not found" signal and the size_t type for the indexes):
#include <utility> // For std::pair
#include <algorithm> // For std::find
#include <vector>
#include <iostream>
std::pair<size_t, size_t> FirstCommon(std::vector<int>& a, std::vector<int>& b)
{
for (size_t i = 0; i < a.size(); ++i) {
auto f = std::find(b.begin(), b.end(), a.at(i));
if (f != b.end()) return { i + 1, f - b.begin() + 1 }; // Found a[i] in b
}
return { 0, 0 };
}
int main()
{
std::vector<int> u = { 32, 25, 13, 42, 55, 33 };
std::vector<int> v = { 18, 72, 53, 39, 13, 12, 28 };
auto match = FirstCommon(u, v);
std::cout << "Position is {" << match.first << "," << match.second << "}." << std::endl;
return 0;
}
On
In addition to "small-sized vectors" and "no duplicates", if it is the case that your keys are always within a known, memory-supported range (e.g. "no key will ever be greater than 10.000"), then you can leverage this extra info to achieve an O(max(N,M)) (linear time!) solution ( @Jarod's is O(max(N,M) * log(N+M)) and @Adrian's is O(N*M)).
First, establish a large enough prime (i.e. a prime larger than the largest key) and then start to build a hashmap up to the point where the first collision happens.
std::pair<size_t, size_t> findFirstMatch(const std::vector<int>& u, const std::vector<int>& v, const int& prime) {
std::vector<size_t> hashmap(prime, INT_MAX); // ---> 'INT_MAX' returned if no common entries found.
size_t smallerSz = std::min(u.size(), v.size());
std::pair<size_t, size_t> solution = { INT_MAX, INT_MAX };
bool noCollision = true;
// Alternate checking, to ensure minimal testing:
for (size_t i = 0; i < smallerSz; ++i) {
//One step for vetor u:
size_t& idx = hashmap[u[i] % prime];
if (idx < INT_MAX) { // ---> Collision!
solution = { i, idx };
noCollision = false;
break;
}
idx = i;
//One step for vector v:
idx = hashmap[v[i] % prime];
if (idx < INT_MAX) { // ---> Collision!
solution = { idx, i };
noCollision = false;
break;
}
idx = i;
}
//If no collisions so far, then the remainder of the larger vector must still be checked:
if(noCollision){
const bool uLarger = u.size() > v.size();
const std::vector<int>& largerVec = (uLarger) ? u : v;
for (size_t i = smallerSz; i < largerVec.size(); ++i) {
size_t& idx = hashmap[largerVec[i] % prime];
if (idx < INT_MAX) { // ---> Collision!
if (uLarger) solution = { i, idx };
else solution = { idx, i };
break;
}
idx = i;
}
}
return solution;
}
USAGE
int main()
{
std::vector<int> u = { 32, 25, 13, 42, 55, 33 }, v = { 18, 72, 53, 39, 13, 12, 28 };
const int prime = 211; // ---> Some suitable prime...
std::pair<size_t, size_t> S = findFirstMatch(u, v, prime);
std::cout << "Solution = {" << S.first << "," << S.second << "}.";
return 0;
}
It outputs "{2, 4}" instead of "{3, 5}" because the first index is 0. Feel free to modify it.
Assuming you don't have duplicate, you might use the following:
Demo
O(max(N, M) * log(N + M))with map (andO(max(N, M))in average withstd::unordered_map)