I used softmax to implement classification, but my code encountered a loss during runtime. This is my code:
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import torch
import pandas as pd
import numpy as np
from d2l import torch as d2l
from torch import nn
from sklearn.model_selection import train_test_split
from IPython import display
from sklearn.preprocessing import StandardScaler
# In[2]:
batch_size = 10000
num_inputs = 16
num_outputs = 6
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True,dtype=torch.float32)
b = torch.zeros(num_outputs, requires_grad=True,dtype=torch.float32)
# In[3]:
def normal(data):
scaler = StandardScaler()
scaler.fit(data)
data = scaler.transform(data)
return data
# In[4]:
def load_array(data_train, data_label, batch_size, is_train=True): # is_train是否打乱数据
dataset = torch.utils.data.TensorDataset(data_train, data_label) # 传入参数(data_tensor,data_target)
data_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True,num_workers = 0)
return data_iter
# In[5]:
def dataIter(data_train,data_label):
#data_train = normal(data_train)
data_train = np.array(data_train)
data_train = torch.from_numpy(data_train)
data_label = np.array(data_label)
data_label = torch.from_numpy(data_label)
data_train = data_train.to(torch.float32)
data_label = data_label.to(torch.float32)
data = load_array(data_train, data_label, batch_size, is_train=True)
return data
# In[6]:
def splitData(data_ves):
X = data_ves.iloc[:, 2:18]
y = data_ves.iloc[:, 1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0,shuffle = True)
train_iter = dataIter(X_train,y_train)
test_iter = dataIter(X_test,y_test)
return train_iter,test_iter
# In[7]:
# 导入数据
datapath = "D:/Code/datasets/Anonymized AIS training data/demo3.csv"
data_ves = pd.read_csv(datapath)
train_iter, test_iter = splitData(data_ves)
# In[8]:
def softmax(X):
X_exp = torch.exp(X)
partition = X_exp.sum(1, keepdim=True)
return X_exp / partition # 这里应用了广播机制
# In[9]:
def net(X):
X = X.reshape((-1, W.shape[0]))
temp = X@W+ b
y_hat = softmax(temp)
return y_hat
# In[10]:
def cross_entropy(y_hat, y):
y = y.to(torch.int64)
loss = - torch.log(y_hat[range(len(y_hat)), y])
return loss
# In[11]:
def accuracy(y_hat, y):
"""计算预测正确的数量"""
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.type(y.dtype) == y
return float(cmp.type(y.dtype).sum())
# In[12]:
def evaluate_accuracy(net, data_iter): #@save
"""计算在指定数据集上模型的精度"""
if isinstance(net, torch.nn.Module):
net.eval() # 将模型设置为评估模式
metric = Accumulator(2) # 正确预测数、预测总数
with torch.no_grad():
for X, y in data_iter:
metric.add(accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
# In[13]:
class Accumulator:
"""在n个变量上累加"""
def __init__(self, n):
self.data = [0.0] * n
def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
# In[14]:
def train_epoch(net, train_iter, loss, updater):
# 将模型设置为训练模式
if isinstance(net, torch.nn.Module):
net.train()
# 训练损失总和、训练准确度总和、样本数
metric = Accumulator(3)
for X, y in train_iter:
# 计算梯度并更新参数
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer):
# 使用PyTorch内置的优化器和损失函数
updater.zero_grad()
l.mean().backward()
updater.step()
else:
# 使用定制的优化器和损失函数
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
# 返回训练损失和训练精度
return metric[0] / metric[2], metric[1] / metric[2]
# In[15]:
class Animator:
"""在动画中绘制数据"""
def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
figsize=(3.5, 2.5)):
# 增量地绘制多条线
if legend is None:
legend = []
d2l.use_svg_display()
self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1:
self.axes = [self.axes, ]
# 使用lambda函数捕获参数
self.config_axes = lambda: d2l.set_axes(
self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
self.X, self.Y, self.fmts = None, None, fmts
def add(self, x, y):
# 向图表中添加多个数据点
if not hasattr(y, "__len__"):
y = [y]
n = len(y)
if not hasattr(x, "__len__"):
x = [x] * n
if not self.X:
self.X = [[] for _ in range(n)]
if not self.Y:
self.Y = [[] for _ in range(n)]
for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):
self.axes[0].plot(x, y, fmt)
self.config_axes()
display.display(self.fig)
display.clear_output(wait=True)
# In[27]:
def train(net, train_iter, test_iter, loss, num_epochs, updater):
animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):
print(f"Epoch [{epoch+1}/{num_epochs}]")
train_metrics = train_epoch(net, train_iter, loss, updater)
test_acc = evaluate_accuracy(net, test_iter)
animator.add(epoch + 1, train_metrics + (test_acc,))
train_loss, train_acc = train_metrics
print(f'epoch {epoch}, loss {train_loss}, train acc {train_acc} test acc {test_acc}')
train_loss, train_acc = train_metrics
assert train_loss < 0.5, train_loss
assert train_acc <= 1 and train_acc > 0.7, train_acc
assert test_acc <= 1 and test_acc > 0.7, test_acc
# In[17]:
def sgd(params, lr, batch_size):
with torch.no_grad():
for param in params:
param -= lr * param.grad / batch_size
param.grad.zero_()
# In[18]:
lr = 0.00001
def updater(batch_size):
return d2l.sgd([W, b], lr, batch_size)
# In[28]:
num_epochs = 1
train(net, train_iter,test_iter,cross_entropy, num_epochs, updater)
This is my part of data:
I find the (W, b) becomes nan after some batches, because there were problems with gradient calculation, but I don't know exactly what the problem is.