I am trying to use this MATLAB code for 2D-Diffusion problem from the File Exchange here. The code is shared below. All boundary conditions are set to zero (zero flux), and I set my initial condition for example as u(20,25)=2, and zero everywhere else. I run the code for about 100 time steps; I expected that at each time step the total field (amount of substance in my grid if you may) would add up to 2 (remain constant). But to my surprise, a plot of the sum of the u matrix over time decreases. [NB: I find the total field/value by sum(sum(u))].
Can someone tell me what I am doing wrong? or is my understanding of the concept is wrong.
% Simulating the 2-D Diffusion equation by the Finite Difference
...Method
% Numerical scheme used is a first order upwind in time and a second
...order central difference in space (Implicit and Explicit)
%%
%Specifying parameters
nx=200; %Number of steps in space(x)
ny=200; %Number of steps in space(y)
nt=100; %Number of time steps
dt=0.01; %Width of each time step
dx=2/(nx-1); %Width of space step(x)
dy=2/(ny-1); %Width of space step(y)
x=0:dx:2; %Range of x(0,2) and specifying the grid points
y=0:dy:2; %Range of y(0,2) and specifying the grid points
u=zeros(nx,ny); %Preallocating u
un=zeros(nx,ny); %Preallocating un
vis=0.1; %Diffusion coefficient/viscocity
UW=0; %x=0 Dirichlet B.C
UE=0; %x=L Dirichlet B.C
US=0; %y=0 Dirichlet B.C
UN=0; %y=L Dirichlet B.C
UnW=0; %x=0 Neumann B.C (du/dn=UnW)
UnE=0; %x=L Neumann B.C (du/dn=UnE)
UnS=0; %y=0 Neumann B.C (du/dn=UnS)
UnN=0; %y=L Neumann B.C (du/dn=UnN)
%%
%Initial Conditions
u(nx/2,ny/2)=2;
%%
%B.C vector
bc=zeros(nx-2,ny-2);
bc(1,:)=UW/dx^2; bc(nx-2,:)=UE/dx^2; %Dirichlet B.Cs
bc(:,1)=US/dy^2; bc(:,ny-2)=UN/dy^2; %Dirichlet B.Cs
%bc(1,:)=-UnW/dx; bc(nx-2,:)=UnE/dx; %Neumann B.Cs
%bc(:,1)=-UnS/dy; bc(:,nx-2)=UnN/dy; %Neumann B.Cs
%B.Cs at the corners:
bc(1,1)=UW/dx^2+US/dy^2; bc(nx-2,1)=UE/dx^2+US/dy^2;
bc(1,ny-2)=UW/dx^2+UN/dy^2; bc(nx-2,ny-2)=UE/dx^2+UN/dy^2;
bc=vis*dt*bc;
%Calculating the coefficient matrix for the implicit scheme
Ex=sparse(2:nx-2,1:nx-3,1,nx-2,nx-2);
Ax=Ex+Ex'-2*speye(nx-2); %Dirichlet B.Cs
%Ax(1,1)=-1; Ax(nx-2,nx-2)=-1; %Neumann B.Cs
Ey=sparse(2:ny-2,1:ny-3,1,ny-2,ny-2);
Ay=Ey+Ey'-2*speye(ny-2); %Dirichlet B.Cs
%Ay(1,1)=-1; Ay(ny-2,ny-2)=-1; %Neumann B.Cs
A=kron(Ay/dy^2,speye(nx-2))+kron(speye(ny-2),Ax/dx^2);
D=speye((nx-2)*(ny-2))-vis*dt*A;
%%
%Calculating the field variable for each time step
i=2:nx-1;
j=2:ny-1;
totalField=[];
totalField(1)=sum(sum(u));
for it=0:nt
un=u;
h=surf(x,y,u','EdgeColor','none'); %plotting the field variable
shading interp
axis ([0 2 0 2 0 2])
title({['2-D Diffusion with {\nu} = ',num2str(vis)];['time (\itt) = ',num2str(it*dt)]})
xlabel('Spatial co-ordinate (x) \rightarrow')
ylabel('{\leftarrow} Spatial co-ordinate (y)')
zlabel('Transport property profile (u) \rightarrow')
drawnow;
refreshdata(h)
%Uncomment as necessary
%Implicit method:
U=un;U(1,:)=[];U(end,:)=[];U(:,1)=[];U(:,end)=[];
U=reshape(U+bc,[],1);
U=D\U;
U=reshape(U,nx-2,ny-2);
u(2:nx-1,2:ny-1)=U;
%Boundary conditions
%Dirichlet:
u(1,:)=UW;
u(nx,:)=UE;
u(:,1)=US;
u(:,ny)=UN;
totalField=[totalField sum(sum(u))];
end
plot(totalField)
