This is in continuation of this question, based on this answer. Using the technique explained by Saizan, and factoring my fromList-toList proof a bit to avoid the problematic recursion, I managed to fill in all but one cases of fromList-toList. I think it's easiest if I just show everything I have:
{-# OPTIONS --cubical #-}
module _ where
open import Cubical.Core.Everything
open import Cubical.Foundations.Everything hiding (assoc)
data FreeMonoid {ℓ} (A : Type ℓ) : Type ℓ where
[_] : A → FreeMonoid A
ε : FreeMonoid A
_·_ : FreeMonoid A → FreeMonoid A → FreeMonoid A
εˡ : ∀ x → ε · x ≡ x
εʳ : ∀ x → x · ε ≡ x
assoc : ∀ x y z → (x · y) · z ≡ x · (y · z)
squash : isSet (FreeMonoid A)
infixr 20 _·_
open import Cubical.Data.List hiding ([_])
module ListVsFreeMonoid {ℓ} {A : Type ℓ} (AIsSet : isSet A) where
listIsSet : isSet (List A)
listIsSet = isOfHLevelList 0 AIsSet
toList : FreeMonoid A → List A
toList [ x ] = x ∷ []
toList ε = []
toList (m₁ · m₂) = toList m₁ ++ toList m₂
toList (εˡ m i) = toList m
toList (εʳ m i) = ++-unit-r (toList m) i
toList (assoc m₁ m₂ m₃ i) = ++-assoc (toList m₁) (toList m₂) (toList m₃) i
toList (squash m₁ m₂ p q i j) = listIsSet (toList m₁) (toList m₂) (cong toList p) (cong toList q) i j
fromList : List A → FreeMonoid A
fromList [] = ε
fromList (x ∷ xs) = [ x ] · fromList xs
toList-fromList : ∀ xs → toList (fromList xs) ≡ xs
toList-fromList [] = refl
toList-fromList (x ∷ xs) = cong (x ∷_) (toList-fromList xs)
fromList-homo : ∀ xs ys → fromList xs · fromList ys ≡ fromList (xs ++ ys)
fromList-homo [] ys = εˡ (fromList ys)
fromList-homo (x ∷ xs) ys = assoc [ x ] (fromList xs) (fromList ys) ∙ cong ([ x ] ·_) (fromList-homo xs ys)
fromList-toList-· : ∀ {m₁ m₂ : FreeMonoid A} → fromList (toList m₁) ≡ m₁ → fromList (toList m₂) ≡ m₂ → fromList (toList (m₁ · m₂)) ≡ m₁ · m₂
fromList-toList-· {m₁} {m₂} p q = sym (fromList-homo (toList m₁) (toList m₂)) ∙ cong₂ _·_ p q
fromList-toList : ∀ m → fromList (toList m) ≡ m
fromList-toList [ x ] = εʳ [ x ]
fromList-toList ε = refl
fromList-toList (m₁ · m₂) = fromList-toList-· (fromList-toList m₁) (fromList-toList m₂)
fromList-toList (εˡ m i) = isSet→isSet' squash
(fromList-toList-· refl (fromList-toList m))
(fromList-toList m)
(λ i → fromList (toList (εˡ m i)))
(λ i → εˡ m i)
i
fromList-toList (εʳ m i) = isSet→isSet' squash
(fromList-toList-· (fromList-toList m) refl)
(fromList-toList m)
((λ i → fromList (toList (εʳ m i))))
(λ i → εʳ m i)
i
fromList-toList (assoc m₁ m₂ m₃ i) = isSet→isSet' squash
(fromList-toList-· (fromList-toList-· (fromList-toList m₁) (fromList-toList m₂)) (fromList-toList m₃))
(fromList-toList-· (fromList-toList m₁) (fromList-toList-· (fromList-toList m₂) (fromList-toList m₃)))
(λ i → fromList (toList (assoc m₁ m₂ m₃ i)))
(λ i → assoc m₁ m₂ m₃ i)
i
fromList-toList (squash x y p q i j) = ?
Sets are groupoids so I thought I can try doing exactly the same in that last case as before, just one dimension higher. But this is where I start failing: for some reason, two of the six faces cannot be constructed using the fact that FreeMonoid is a set. In more concrete terms, in the two missing faces in the code below, if I just try to refine by putting isSet→isSet' squash in the hole (with no more arguments specified), I already get "cannot refine".
Here's my code for the four faces that I managed to fill in:
fromList-toList (squash x y p q i j) = isGroupoid→isGroupoid' (hLevelSuc 2 _ squash)
{fromList (toList x)}
{x}
{fromList (toList y)}
{y}
{fromList (toList (p i))}
{p i}
{fromList (toList (q i))}
{q i}
{λ k → fromList (toList (p k))}
{fromList-toList x}
{fromList-toList y}
{p}
{λ k → fromList (toList (squash x y p q k i))}
{fromList-toList (p i)}
{fromList-toList (q i)}
{λ k → squash x y p q k i}
{λ k → fromList (toList (p (i ∧ k)))}
{λ k → p (i ∧ k)}
{λ k → fromList (toList (q (i ∨ ~ k)))}
{λ k → q (i ∨ ~ k)}
?
f2
f3
?
f5
f6
i
j
where
f2 = isSet→isSet' squash
(fromList-toList x) (fromList-toList (p i))
(λ k → fromList (toList (p (i ∧ k)))) (λ k → p (i ∧ k))
f3 = isSet→isSet' squash
(fromList-toList y) (fromList-toList (q i))
(λ k → fromList (toList (q (i ∨ ~ k)))) (λ k → q (i ∨ ~ k))
f5 = isSet→isSet' squash (fromList-toList x) (fromList-toList y)
(λ k → fromList (toList (p k)))
(λ k → p k)
f6 = isSet→isSet' squash (fromList-toList (p i)) (fromList-toList (q i))
(λ k → fromList (toList (squash x y p q k i)))
(λ k → squash x y p q k i)
The reported types of the two missing faces are:
Square
(λ k → fromList (toList (p (i ∧ k))))
(λ k → fromList (toList (p k)))
(λ k → fromList (toList (squash x y p q k i)))
(λ k → fromList (toList (q (i ∨ ~ k))))
and
Square
(λ k → p (i ∧ k))
p
(λ k → squash x y p q k i)
(λ k → q (i ∨ ~ k))
Of course, I make no claims that the existing four faces are correct.
So I guess my question is either, what are the two missing faces, or alternatively, what are the correct 6 faces?
The six faces are not arbitrary ones between the endpoints, they are given by the type and other clauses of
fromList-toList.To find them out we can use the strategy from the other answer but one dimension higher. First we declare a cube define through
conging offromList-toList:We can then ask agda to solve the six
?s byC-c C-sand after a little cleanup we get:in this case we are able to use those faces directly as there's no problem with recursion.
By the way, if you are going to prove more equalities by induction it may pay off to implement a more general function first:
as paths in
FreeMonoid Aare a proposition.