Currently i am working on a project which requires keywords extraction or we can say keyword based text classification . The dataset contains 3 columns text, keywords and cc terms, I need to extract keywords from text and then classify the text based on those keywords, each row in dataset has their own keywords, i want to extract similar kind of keywords. I want to train the by providing text and keyword column so that the model is able to extract keywords for unknown text.please help
keyword extraction and Keyword based text classification
570 Views Asked by Revati Nanda At
1
There are 1 best solutions below
Related Questions in DEEP-LEARNING
- new thread blocks main thread
- Extracting viewCount & SubscriberCount from YouTube API V3 for a given channel, where channelID does not equal userID
- Display images on Django Template Site
- Difference between list() and dict() with generators
- How can I serialize a numpy array while preserving matrix dimensions?
- Protractor did not run properly when using browser.wait, msg: "Wait timed out after XXXms"
- Why is my program adding int as string (4+7 = 47)?
- store numpy array in mysql
- how to omit the less frequent words from a dictionary in python?
- Update a text file with ( new words+ \n ) after the words is appended into a list
Related Questions in KEYWORD
- new thread blocks main thread
- Extracting viewCount & SubscriberCount from YouTube API V3 for a given channel, where channelID does not equal userID
- Display images on Django Template Site
- Difference between list() and dict() with generators
- How can I serialize a numpy array while preserving matrix dimensions?
- Protractor did not run properly when using browser.wait, msg: "Wait timed out after XXXms"
- Why is my program adding int as string (4+7 = 47)?
- store numpy array in mysql
- how to omit the less frequent words from a dictionary in python?
- Update a text file with ( new words+ \n ) after the words is appended into a list
Related Questions in FEATURE-EXTRACTION
- new thread blocks main thread
- Extracting viewCount & SubscriberCount from YouTube API V3 for a given channel, where channelID does not equal userID
- Display images on Django Template Site
- Difference between list() and dict() with generators
- How can I serialize a numpy array while preserving matrix dimensions?
- Protractor did not run properly when using browser.wait, msg: "Wait timed out after XXXms"
- Why is my program adding int as string (4+7 = 47)?
- store numpy array in mysql
- how to omit the less frequent words from a dictionary in python?
- Update a text file with ( new words+ \n ) after the words is appended into a list
Related Questions in TEXT-CLASSIFICATION
- new thread blocks main thread
- Extracting viewCount & SubscriberCount from YouTube API V3 for a given channel, where channelID does not equal userID
- Display images on Django Template Site
- Difference between list() and dict() with generators
- How can I serialize a numpy array while preserving matrix dimensions?
- Protractor did not run properly when using browser.wait, msg: "Wait timed out after XXXms"
- Why is my program adding int as string (4+7 = 47)?
- store numpy array in mysql
- how to omit the less frequent words from a dictionary in python?
- Update a text file with ( new words+ \n ) after the words is appended into a list
Related Questions in KEYWORD-EXTRACTION
- new thread blocks main thread
- Extracting viewCount & SubscriberCount from YouTube API V3 for a given channel, where channelID does not equal userID
- Display images on Django Template Site
- Difference between list() and dict() with generators
- How can I serialize a numpy array while preserving matrix dimensions?
- Protractor did not run properly when using browser.wait, msg: "Wait timed out after XXXms"
- Why is my program adding int as string (4+7 = 47)?
- store numpy array in mysql
- how to omit the less frequent words from a dictionary in python?
- Update a text file with ( new words+ \n ) after the words is appended into a list
Trending Questions
- UIImageView Frame Doesn't Reflect Constraints
- Is it possible to use adb commands to click on a view by finding its ID?
- How to create a new web character symbol recognizable by html/javascript?
- Why isn't my CSS3 animation smooth in Google Chrome (but very smooth on other browsers)?
- Heap Gives Page Fault
- Connect ffmpeg to Visual Studio 2008
- Both Object- and ValueAnimator jumps when Duration is set above API LvL 24
- How to avoid default initialization of objects in std::vector?
- second argument of the command line arguments in a format other than char** argv or char* argv[]
- How to improve efficiency of algorithm which generates next lexicographic permutation?
- Navigating to the another actvity app getting crash in android
- How to read the particular message format in android and store in sqlite database?
- Resetting inventory status after order is cancelled
- Efficiently compute powers of X in SSE/AVX
- Insert into an external database using ajax and php : POST 500 (Internal Server Error)
Popular # Hahtags
Popular Questions
- How do I undo the most recent local commits in Git?
- How can I remove a specific item from an array in JavaScript?
- How do I delete a Git branch locally and remotely?
- Find all files containing a specific text (string) on Linux?
- How do I revert a Git repository to a previous commit?
- How do I create an HTML button that acts like a link?
- How do I check out a remote Git branch?
- How do I force "git pull" to overwrite local files?
- How do I list all files of a directory?
- How to check whether a string contains a substring in JavaScript?
- How do I redirect to another webpage?
- How can I iterate over rows in a Pandas DataFrame?
- How do I convert a String to an int in Java?
- Does Python have a string 'contains' substring method?
- How do I check if a string contains a specific word?
Keyword extraction is typically done using TF-IDF scores simply by setting a score threshold. When training a classifier, it does not make much sense to cut off the keywords at a certain threshold, knowing that something is not likely to be a keyword might also be a valuable piece of information for the classifier.
The simplest way to get the TF-IDF scores for particular words is using TfIdfVectorizer in scikit-learn that does all the laborious text preprocessing steps (tokenization, removing stop words).
You can probably achieve better results by fine-tuning BERT for your classification task (but of course at the expense of much higher computational costs).