I am trying to integrate a function in Mathematica that uses eigenvectors and eigenvalues from a matrix. Using NIntegrate I am getting zero. The error says Eigenvectors: Unable to find all eigenvectors. General: Further output of Eigenvectors::eivec0 will be suppressed during this calculation.
\[Gamma]1 = 0.381;
u = 100 10^-3;
\[Phi] = \[Pi]/4;
v = 3 10^-3;
n = 1 10^-3;
H[k_, q_, \[Theta]_] := {
{u/2, v (k Cos[\[Theta]] + q Cos[\[Phi]] - I (k Sin[\[Theta]] + q Sin[\[Phi]])), 0, 0},
{v (k Cos[\[Theta]] + q Cos[\[Phi]] + I (k Sin[\[Theta]] + q Sin[\[Phi]])), u/2, \[Gamma]1, 0},
{0, \[Gamma]1, -(u/2), v (k Cos[\[Theta]] + q Cos[\[Phi]] - I (k Sin[\[Theta]] + q Sin[\[Phi]]))},
{0, 0, v (k Cos[\[Theta]] + q Cos[\[Phi]] + I (k Sin[\[Theta]] + q Sin[\[Phi]])), -(u/2)}
};
sortedEigenvaluesAndVectors[kk_, \[Theta]_, q_] := Module[{eigenvalues, eigenvectors, eigenpairs},
{eigenvalues, eigenvectors} = Eigensystem[H[kk, q, \[Theta]]];
eigenpairs = Transpose[{eigenvalues, eigenvectors}];
eigenpairs = SortBy[eigenpairs, First];
{eigenpairs[[All, 1]], eigenpairs[[All, 2]]}
];
Xintegrand[kk_, \[Theta]_, qq_, w_] := (
4 kk)/(2 \[Pi])^2 (Abs[
ConjugateTranspose[sortedEigenvaluesAndVectors[kk, \[Theta], 0][[2]][[1]]] .
sortedEigenvaluesAndVectors[kk, \[Theta], qq][[2]][[3]]
]^2 / (w +
sortedEigenvaluesAndVectors[kk, \[Theta], 0][[1]][[1]] -
sortedEigenvaluesAndVectors[kk, \[Theta], qq][[1]][[3]] + I n) +
Abs[
ConjugateTranspose[sortedEigenvaluesAndVectors[kk, \[Theta], 0][[2]][[1]]] .
sortedEigenvaluesAndVectors[kk, \[Theta], qq][[2]][[4]]
]^2 / (w +
sortedEigenvaluesAndVectors[kk, \[Theta], 0][[1]][[1]] -
sortedEigenvaluesAndVectors[kk, \[Theta], qq][[1]][[4]] + I n) +
Abs[
ConjugateTranspose[sortedEigenvaluesAndVectors[kk, \[Theta], 0][[2]][[2]]] .
sortedEigenvaluesAndVectors[kk, \[Theta], qq][[2]][[3]]
]^2 / (w +
sortedEigenvaluesAndVectors[kk, \[Theta], 0][[1]][[2]] -
sortedEigenvaluesAndVectors[kk, \[Theta], qq][[1]][[3]] + I n) +
Abs[
ConjugateTranspose[sortedEigenvaluesAndVectors[kk, \[Theta], 0][[2]][[2]]] .
sortedEigenvaluesAndVectors[kk, \[Theta], qq][[2]][[4]]
]^2 / (w +
sortedEigenvaluesAndVectors[kk, \[Theta], 0][[1]][[2]] -
sortedEigenvaluesAndVectors[kk, \[Theta], qq][[1]][[4]] + I n)
);
NIntegrate[Xintegrand[kk, \[Theta], 1, 0.1], {kk, 0, 200}, {\[Theta], 0, 2 \[Pi]}]