Question is from MIT OCW Course Number 6.00, As Taught in Fall 2008: Here is a theorem below:
If it is possible to buy x, x+1,…, x+5 sets of McNuggets, for some x, then it is possible to buy any number of McNuggets >= x, given that McNuggets come in 6, 9 and 20 packs.
Using the theorem above, write an exhaustive search to find the largest number of McNuggets that cannot be bought in exact quantity, i.e. write an iterative program that finds the largest number of McNuggets that cannot be bought in exact quantity. Format of search should follow the outline below:
Hypothesise possible instances of numbers of McNuggets that cannot be purchased exactly, starting with 1. For each possible instance, called n, test if there exists non-negative integers a, b, and c, such that 6a+9b+20c = n. If n McNuggets cannot be bought in exact quantity, save n. When have found 6 consecutive values of n where 6a+9b+20c = n, the last answer that was saved (not the last value of n that had a solution) is the correct answer, since from the theorem, any amount larger than this saved value of n can also be bought in exact quantity
The error is in line 14 of the code below and this is the error:
elif(6*a + 9*b + 20*c < n_saved or 6*a + 9*b + 20*c > n_saved):
^
SyntaxError: invalid syntax
Here is the code:
def largest_not(a, b, c, n, n_saved):
a = 0
b = 0
c = 0
n = 0
n_saved = 0
for a in range (10):
for b in range (10):
for c in range (10):
for n in range (10):
for n_saved in range (10):
if (6*a + 9*b + 20*c == n):
print (n)
elif(6*a + 9*b + 20*c < n_saved or 6*a + 9*b + 20*c > n_saved):
print (n_saved)
if (n - n_saved > 5):
print "Largest number of McNuggets that cannot be bought in exact quantity: " + "<" + n_saved + ">"
else :
print "Have not found the largest number of McNuggets that cannot be bought in exact quantity."
a=6
b=9
c=20
largest_not(a, b, c, n, n_saved)

Here is a way to solve this:
result is: