There are a multitude of different instructions in MIPS. I'm currently learning about data and instruction cache.
Instruction cache simply takes what it can so to say, depending on the block size it might utilize spatial locality and fetch multiple instructions. But for data cache I have a harder time understanding when it fetches things from main memory and when it doesn't.
For example, the instruction lw $t0, 0x4C($0) will fetch a word of data stored in address 0x4C and depending on data cache capacity, sets, block size and so forth it will temporarily store in in a block in the cache if for that adress the valid bit or tag doesn't exist there.
In my litterature, an addi instruction does not fetch from memory, why? The only times it seems to need to fetch data from memory is when using the lw instruction, why?
I also have a question regarding registers in MIPS. If we're simply doing the instructions over the registers, then there will be no access to any main memory, correct? It will not even go to the data cache, correct? Are the registers the highest level in the memory heirarchy?
The reason
addidoesn't "fetch from memory" is that it's using an immediate operand, as in, the program counter has already fetched the value that's going to be loaded. (Technically it is fetching from memory, since all code resides in some form of memory, but when literature refers to "memory" typically it's referring to a range of memory outside the program counter. When MIPS uses something likelwto load from memory, the CPU has no idea what value the destination register will have until the load is finished.Just to illustrate this concept further, the original MIPS I architecture (which was used by the PlayStation 1) actually wouldn't finish loading from memory before the next instruction was already being worked on!
The easiest solution to this was to put a
nopafter everylw. Chances are the version of MIPS you're using doesn't have this problem, so don't worry about it.