I don't know if anyone is familiar with Dan Foreman-Mackley's "emcee" Python module, but I am using it to sample a distribution. I am using the Parallel Tempering sampler because my distribution is funky looking. Here is the relevant code:
from emcee import PTSampler
rendim = 6
renwalkers = 100
ntemps = 20
gauss2 = PTSampler(ntemps, renwalkers, rendim, lnlike, lnprior)
p0 = [[[np.random.rand()*0.24,np.random.rand()*3,np.random.rand()*1,np.random.rand()*1,np.random.rand()*3,np.random.rand()*1] for i in range(renwalkers)] for i in range(ntemps)]
for q, lnprob, lnlike in gauss2.sample(p0,iterations=1000):
pass
gauss2.reset()
for q, lnprob, lnlike in gauss2.sample(p, lnprob0=lnprob,
lnlike0=lnlike,
iterations=10000, thin=10):
pass
I keep getting the error that 'numpy.ndarray' object is not callable. Here is the full error:
TypeError Traceback (most recent call last)
<ipython-input-25-d5f2a1f4b7b0> in <module>()
11 p0 = [[[np.random.rand()*0.24,np.random.rand()*3,np.random.rand()*1,np.random.rand()*1,np.random.rand()*3,np.random.rand()*1] for i in range(renwalkers)] for i in range(ntemps)]
12
---> 13 for q, lnprob, lnlike in gauss2.sample(p0,iterations=1000):
14 pass
15 gauss2.reset()
/Library/Python/2.7/site-packages/emcee-2.1.0-py2.7.egg/emcee/ptsampler.py in sample(self, p0, lnprob0, lnlike0, iterations, thin, storechain)
255 self.logpargs, self.loglkwargs, self.logpkwargs)
256 if self.pool is None:
--> 257 results = list(map(fn, p.reshape((-1, self.dim))))
258 else:
259 results = list(self.pool.map(fn, p.reshape((-1, self.dim))))
/Library/Python/2.7/site-packages/emcee-2.1.0-py2.7.egg/emcee/ptsampler.py in __call__(self, x)
94 return lp, lp
95
---> 96 return self.logl(x, *self.loglargs, **self.loglkwargs), lp
97
98
TypeError: 'numpy.ndarray' object is not callable
Update: here are the lnlike and lnprior functions:
def lnprior(theta):
eta, mu1, sig1, h, mu2, sig2 = theta
if 0 < eta < 0.24 and 0 < mu1 < 1.5 and 0 < sig1 < 1 and 0 < h < 1 and 0 < mu2 < 1.5 and 0 < sig2 < 1:
return 0
return -np.inf
def lnlike(theta):
eta, mu1, sig1, h, mu2, sig2 = theta
return -k*np.log(Nsamp)+np.sum(np.log(np.sum(MCetadist(eta,events,mu1,sig1,h,mu2,sig2),axis=1)))
The message "TypeError: 'numpy.ndarray' object is not callable" means that the "numpy.ndarray" that you are trying to call as a function is a module or variable and is thus not callable. When you call a non-function with '()', you will has this type error. You can just drop the '()' after that reference and everything will be ok.